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Figure 1. Proposed Obj-NeRF: indicate prompts on an image, then Obj-NeRF will output the segmented NeRF for the target object. With
the segmented object NeRF, some applications including NeRF editing can be realized.

Abstract

Neural Radiance Fields (NeRFs) have demonstrated re-
markable effectiveness in novel view synthesis within 3D
environments. However, extracting a radiance field of one
specific object from multi-view images encounters substan-
tial challenges due to occlusion and background complex-
ity, thereby presenting difficulties in downstream applica-
tions such as NeRF editing and 3D mesh extraction. To
solve this problem, in this paper, we propose Obj-NeRF,
a comprehensive pipeline that recovers the 3D geometry
of a specific object from multi-view images using a single
prompt. This method combines the 2D segmentation capa-
bilities of the Segment Anything Model (SAM) in conjunc-
tion with the 3D reconstruction ability of NeRF. Specifically,
we first obtain multi-view segmentation for the indicated
object using SAM with a single prompt. Then, we use the
segmentation images to supervise NeRF construction, inte-
grating several effective techniques. Additionally, we con-
struct a large object-level NeRF dataset containing diverse
objects, which can be useful in various downstream tasks.
To demonstrate the practicality of our method, we also ap-
ply Obj-NeRF to various applications, including object re-
moval, rotation, replacement, and recoloring. The project
page is at https://objnerf.github.io/.

1. Introduction

Neural Radiance Fields (NeRFs) have attracted enormous
academic interest in 3D scene representation, due to their

remarkable ability to produce high-quality synthesized
views in diverse 3D environments [17]. Recent works have
concentrated on enhancing the performance and practicality
of NeRF, thereby broadening its applicability with higher
reconstruction quality and faster training speed [8, 19, 27].

Moreover, NeRF is also widely used in many down-
stream applications, including 3D editing and novel view
synthesis [14]. With that, the demand for object-specific
NeRF datasets has risen. Nevertheless, the inherent limita-
tion of NeRF, which provides only color and density infor-
mation, presents a challenge for extracting specific objects
from multi-view images.

In order to extract object-level NeRF from multi-view
images, recent works have primarily explored the utiliza-
tion of 2D visual models like CLIP [23] or DINO [4]
along with additional feature images provided by modified
NeRFs, such as LERF [11] and Interactive Segment Any-
thing NeRF [6]. However, this approach has limitations,
including the absence of required 3D object meshes, exces-
sive additional training costs for the complete scene NeRF,
and suboptimal reconstruction quality [6].

To address these limitations, our objective is to extract
specific object NeRFs from multi-view images representing
a 3D scenario. Although there have been continuous ad-
vancements in 2D image segmentation, such as the recently
proposed Segment Anything Model (SAM) [12], segment-
ing the required 3D object NeRF from an original scenario
encounters numerous challenges. Notably, training a 3D
segmentation model similar to SAM for zero-shot segmen-
tation tasks remains a formidable undertaking [5]. While
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Figure 2. The overall pipeline for Obj-NeRF. Starting with multi-view RGB images, a COLMAP sparse point cloud can be constructed,
which provides multi-view consistency for segmentation. After initializing several prompts for the first image, we can automatically obtain
multi-view segmented images quickly, which are used to construct the required segmented NeRF. For large datasets, the indicated objects
will be prompted for each scene.

extending segmentation capabilities directly into 3D scenar-
ios presents formidable challenges, combining the 2D seg-
mentation proficiency of SAM with the 3D representation
capabilities of NeRF is a feasible and promising approach.

Based on this idea, in this work, we propose Segment
Object NeRF (Obj-NeRF) to extract a certain object and
reconstruct its geometry, from a few user prompts. The
effectiveness of Obj-NeRF is depicted in Figure 1. Obj-
NeRF initially receives prompts indicating a specific object
within a single image, selected from a set of multi-view im-
ages representing a 3D scenario. Subsequently, Obj-NeRF
generates multi-view segmented images through the utiliza-
tion of the SAM, thereby supervising the construction of the
segmented target object NeRF. After acquiring the object
NeRF, we further evaluate it on various 3D editing applica-
tions. The main contributions of this paper can be summa-
rized as follows:

• Firstly, we present a comprehensive pipeline for con-
structing a segmented NeRF targeting a specific object,
with the input consisting of initial prompts from a single
image. Our pipeline eliminates the need for pre-trained
full-scene NeRFs, thereby avoiding unnecessary training
expenses and enhancing reconstruction quality.

• Next, to obtain multi-view segmented images of the target
object, we introduce a multi-view segmentation algorithm
with high quality and efficiency. Leveraging a 3D sparse
point cloud, we rapidly disseminate the initial prompts to
all images and extract segmented masks from SAM.

• Additionally, in order to create massive object NeRFs
from large multiview datasets, we propose an automatic
self-prompting mechanism with only simple textual in-
put. It will enable the identification of the desired object

for each scene, thereby constructing a dataset of multi-
view segmented objects.

• Finally, to enhance the quality of novel view synthesis us-
ing NeRFs, we propose several methods, including super-
vision with sparse and dense depth priors, bounding box
calculation, and ray pruning for improving performance.
Additionally, we validate the effectiveness of segmented
object NeRFs by modifying existing NeRFs.

2. Related Works
NeRF for Novel View Synthesis. Neural Radiance Fields
(NeRFs) have gained numerous research interests in novel
view reconstruction [17]. Recently, researchers have been
working on improving the effectiveness of NeRFs, in-
cluding enhancing reconstruction quality via various meth-
ods [1, 8, 24, 31], increasing training speed with high syn-
thesis effect [19, 27, 28], and expanding their application
scenarios [22, 29]. There are also many downstream works
on NeRFs, such as NeRF editing [18, 33, 34], 3D mesh ex-
traction [20], and 3D generation tasks [13, 14, 21].

Segmentation on NeRFs. Significant progress has
been made in 2D semantic fields, including DETR [3]
and CLIP [10]. Recently, models trained on extremely
large-scale datasets, such as the Segment Anything Model
(SAM) [12] and SEEM [35], have shown strong ability on
zero-shot image segmentation. Based on these, many re-
searchers have made some progress to expand on 3D seg-
mentation fields, by training an extra semantic feature on
modified NeRF [11] and distilling segmentation backbone
with NeRF [6]. However, these works cannot provide a
segmented object NeRF, which is essential in many down-
stream applications like 3D scenario editing. SA3D [5] has



proposed a method to construct a segmented object NeRF
from multi-view images with SAM. Nonetheless, SA3D re-
quires a pre-trained original full-scene NeRF, which is im-
practical and brings extra training costs and low reconstruc-
tion quality, especially for large-scale scenes.

3. Preliminaries
In this section, some preliminaries for Obj-NeRF will
be introduced briefly, including the Neural Radiance
Fields (NeRFs) [17] and the Segment Anything Model
(SAM) [12].

Neural Radiance Field. NeRF presents an effective way
to synthesize novel views in 3D scenarios. Specifically,
NeRF defines an underlying continuous volumetric scene
function FΘ : (x,d) =⇒ (c, σ), which outputs the color
c ∈ R3 and the volume density σ ∈ R+ with a given spa-
cial location x ∈ R3 and viewing direction θ ∈ S2. In
this way, the rendering color C(r) for a specific camera ray
r(t) = o + td can be expressed by a volume rendering
algorithm as follows:

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t),d) dt, (1)

where tn and tf are the near and far bounds, and the accu-
mulated transmittance T (t) can be calculated as:

T (t) = exp−
∫ t

tn

σ(r(s)) ds. (2)

With these definitions, NeRFs can be optimized using the
loss between the ground-truth color C(r) and the calculated
color Ĉ(r) for any image I:

LI =
∑
r∈I

∥∥∥C(r)− Ĉ(r)
∥∥∥2 . (3)

Segment Anything Model (SAM) SAM, training by nu-
merous 2D images, has been proved to achieve a state-of-
art efficiency in zero-shot segmentation tasks [12]. With an
image I and some prompts P , including points (positive or
negative) and boxes, SAM can provide a mask for the indi-
cated object mask = S(I,P).

4. Methods
In this section, we will introduce details of Obj-NeRF. First,
the overall pipeline will be demonstrated in Sec. 4.1. Then,
a one-shot multi-view segmentation method will be pre-
sented in Sec. 4.2. After that, we will introduce a self-
prompting method to construct an object NeRF dataset in-
cluding massive objects using the segmentation method
above in Sec. 4.3. In the end, some strategies for novel
views synthesizing by NeRFs will be provided in Sec. 4.4.

4.1. Overall Pipeline

We consider a set of multi-view images I = I1, ..., In for
one specific scenario with known camera poses. If not,
structure-from-motion methods like COLMAP [25] can be
utilized to estimate them. The objective is to acquire the 3D
representation for any object segmented from this scenario
with few prompts. To achieve this, a pre-trained full-scene
NeRF for the scenario is not required due to the unnecessary
training cost and relatively poor quality. Thus, we propose a
method to acquire the segmented NeRF for the object from
multi-view images directly.

The overall pipeline is shown in Fig. 2. To start with,
users will first provide a few prompts for one image on
the object that is expected to be segmented. Based on
this, a COLMAP sparse point cloud [25] can be con-
structed, which provides the correspondence between 2D
images and point clouds used in the next step. Then, the
multi-view segmentation procedure with SAM will pro-
vide multi-view masks for the object. For large datasets,
such as ScanNet [7], ScanNet++ [32], and 3RScan [30],
the self-prompting procedure will quickly generate a series
of prompts of a kind of objects, which can be used to ac-
quire multi-view segmented for each scene with the method
above. In the end, the segmented NeRF of the indicated
object will be trained with these multi-view segmented im-
ages, which provides novel view synthesizing abilities.

4.2. Multi-view Segmentation

4.2.1 Multi-view Segmentation Algorithm

The first step is quickly obtaining multi-view segmented im-
ages from initial prompts on one specific image. It is easy to
get the mask for the initial image M0 with SAM. However,
multi-view consistency should be utilized here in order to
segment the indicated object on each image. A similar ap-
proach is also used by Yin et al. [33] to find a 2D-3D geom-
etry match relationship with prompts spreading, but here we
use it for a different task with some effective methods men-
tioned as follows.

More specifically, a sparse point cloud can be easily con-
structed from input images using COLMAP, a 3D recon-
struction toolbox [25]. These sparse point clouds provide
the correspondence between feature points on each image
and the 3D points in the point cloud. In this way, we can
construct a 3D point list D, which contains 3D points be-
longing to the indicated object. After initializing the list
with 3D points that correspond to the feature points on
I0[M0], the 3D point list and the masks of remnant images
can be updated iteratively. Specifically, for a new image Ii,
the point prompts pi can be selected from the feature points
that correspond to 3D points in the list. Then, the mask Mi

can be obtained using SAM segmentation model S(Ii,pi).
After that, all feature points on Ii[Mi] can be added to the



Algorithm 1 Multi-view Segmentation

Input: A set of images I0, I1, I2, ..., In; Initial point

prompts p0; SAM model S; COLMAP sparse point

cloud C.

Output: Multi-view segmented masks M1,M2, ...,Mn.

1: Get the mask for the initial image M0 = S(I0,p0)

2: Find all feature points X = C[I0] ∪ I0[M0]

3: Init 3D point list D = C(X).

4: for i = 1, 2, ..., n do
5: Find point prompts pi for Ii from D and C
6: Mi ← S(Ii,pi)

7: Xi ← C[Ii] ∪ Ii[Mi]

8: D ←D ∪ C(Xi)

9: end for
10: return M1,M2, ...,Mn

Flower in garden Horns in museum Bowl on table Sofa in room

Figure 3. Segmented point cloud of target objects; Images in the
first row are original sparse point clouds; Images in the second row
are segmented point clouds; Red points on these images indicate
the position of cameras.

list D, which finishes an iterating step. The multi-view seg-
mentation procedure can be summarized in Algorithm 1.

After executing the algorithm above, an interesting
byproduct will be obtained from the list D. As the defi-
nition of D, it is consisted of those 3D points belonging to
the indicated object, which provides its sparse point cloud.
Fig. 3 shows the segmented sparse point cloud of these in-
dicated objects. This can be used in the next step and will
offer some priors to the novel views synthesizing procedure
in Subsection 4.4.

4.2.2 Obstruction Handling

There is a thorny problem that when the target object is ob-
structed by other things, it will be easy for the procedure
leading to a wrong result. In [33], the method based on pro-
jecting 3D points directly as the prompts will severely suffer

(a) Initial prompts

(b) Segmented image

(c) Obstructed view (e) Proposed method

(d) Directly projecting (f) Projecting method

Figure 4. Showing the obstruction effect; (a) Initial point prompts
for the target bowl; (b) Segmented image for the first image; (c) A
view where the target bowl is obstructed by the plant; (d) and (f)
Directly projecting method leading to a wrongly segmented object;
(e) Proposed method to get the correct segmentation.

from it. Here, our proposed multi-view segmentation pro-
cedure overcomes the wrongly prompting effect, by using
the feature point correspondence instead of the projection
method. However, these partially obstructed segmented im-
ages bring multi-view inconsistency for later NeRF training
procedures. As Fig. 4 shows, although the target bowl in-
dicated in Fig. 4 (a) has been correctly segmented in Fig. 4
(e), the inconsistency between Fig. 4 (b) and Fig. 4 (e) will
lead to performance degradation during novel views synthe-
sizing.

In order to eliminate the inconsistency brought by ob-
structed images, it is important to identify them first. With
the segmented sparse point cloud D, we can first project
these 3D points to each image to get the 2D coordinates
for these feature points. Then, we can construct the con-
cave hall for these 2D points as the mask of the target ob-
ject using the alpha-shape method [9]. After that, the esti-
mated mask can be smoothed by a Gaussian filter. Fig. 5
shows the procedures above to identify the obstructed im-
ages. The IoU between Fig. 5 (d) and Fig. 5 (f) is 0.096,
which means the segmented image should be discarded. It
should be noted that we cannot simply calculate the convex
hull and regard it as the mask, for there are usually some
outlier points which will extremely affect it.

4.2.3 Multi-object Segmentation

The proposed segmentation algorithm can be extended to
k-object segmentation tasks. After giving initial prompts
for each target object, we can construct k 3D point lists
D1,D2, ...,Dk and update them with masks separately
with almost little increase in time consumption. In this way,
several target objects can be segmented for only one time.
The performances of the multi-object segmentation method
will be shown in Subsection 5.2.



(a) Sparse point cloud

(b) Original image (d) Segmented mask

Camera pose

(c) Projected points (e) Concave hull

(f) Estimated mask

Alpha

Shape

IoU

0.096Generate mask

Project 3D to 2D

Figure 5. Procedures to identify obstructed images; (a) Segmented
sparse point cloud of the target object; (b) Original RGB image
waiting to be masked; (c) Projecting 3D points to 2D image with
known camera pose; (d) Generating mask for the original image;
(e) Alpha-shape concave hull for the points; (f) Estimated mask
after Gaussian filtering.

4.3. Large Dataset Self-prompting

In Sec. 4.2, we propose a method which receives point
prompts as input and outputs multi-view segmented views.
Thus, if we can segment every object in a large dataset like
ScanNet [7], which contains 1000+ scenes, a large multi-
view 3D object dataset can be constructed and is useful for
many downstream works including generative tasks, like
zero123 [14]. However, manually labeling the prompts
for each object is tedious and unrealistic, which pushes us
to find a feasible way to generate prompts for each scene
quickly from a text prompt.

First, a text prompt should be converted to something
SAM can utilize and then generate a proper mask. Here, we
use an object detector named Grounding DINO model [15],
which receives text input and outputs boxes and scores that
indicate the position and the probability of the target object.
Then, the box with the highest score can be considered as an
input to SAM, which provides a proper mask for the target
object.

The next step is generating point prompts to fit the re-
quirements of the segmentation algorithm proposed in Sub-
section 4.2. These point prompts should fulfill the condi-
tions below: (1) They stay away from each other and repre-
sent all parts of the object; (2) They cannot stay too close to
the edge. Thus, we can first calculate the distance to their
mask for each point on the mask. Then these points near
the edge are selected, for the interior points will interfere
with the next step. Finally, point prompts can be generated
through the k-means method [26]. Fig. 6 shows the steps
which provide point prompts from the mask.

In this way, we create an object NeRF dataset including
a large number of objects with just a few textual inputs. De-
tails are discussed in 5.2.

(a) Mask from box (b) Distance heatmap

Distance 

transform

(c) Edge extraction

K-Means

(d) Prompts

Figure 6. The procedure from mask to point prompts; (a) Mask
from SAM and the box prompt; (b) Distance heatmap showing the
distance to the edge for each point; (c) Extracted points which are
near the edge; (d) Point prompts from k-means method.

4.4. Novel View Synthesizing

With the multi-view segmented images from Subsection
4.2, it is practicable to synthesize novel views for the target
object after training a NeRF. However, simply construct-
ing NeRF with segmented images only will not lead to a
perfect performance. In this subsection, we will introduce
some methods which significantly increase the quality of
synthesizing.

4.4.1 Sparse and Dense Depth-Supervised NeRF

In order to acquire better performance and faster conver-
gence, Deng et al. [8] have proposed a method that adds
depth information to supervise the NeRF training proce-
dure. Specifically, the segmented object sparse point cloud
D mentioned in Subsection 4.2 will provide their 3D co-
ordinate information. Thus, for each image, the depth of
feature points corresponding to the 3D point cloud can be
calculated respectively. In this way, the sparse depth super-
vised NeRF training can be realized with the loss as follows,

LNeRF = Lrgb + λdLdepth, (4)

where Ldepth = ∥d − d̂∥2 indicates the mean square error
of depth. It should be noticed that sparse depth supervision
makes better performance in extremely few multi-view im-
ages like less than 10. For more input images, it will also
improve the quality for reconstruction 3D mesh but may not
for the reconstructed RGB images [8].

Sparse depth supervision brings limited performance en-
hancement due to the scarcity of depth information. To
achieve higher reconstruction, dense depth information
should be included in NeRF training. Many large multi-
view datasets include depth image for each RGB image,



Figure 7. Comparison of reconstruction performance with differ-
ent resolution training images; Left: No down-sampling with ray
pruningS; Right: Down-sampling.

SA3D

Ours

SA3D

Ours

Ours

Figure 8. Novel view synthesis performance for indicated objects
compared with SA3D [5].

such as ScanNet [7], ScanNet++ [32], and 3RScan [30],
which will provide required dense depth information. Fig. 9
shows the novel-view reconstruction performance compari-
son with and without dense depth supervision. Comparing
Fig. 9 (d) and Fig. 9, reconstruction with depth supervision
will provide a significantly higher quality 3D mesh.

4.4.2 Bounding Box and Ray Pruning

After Segmenting the indicated object from each whole im-
age, there are three notable advantages of the reconstruction
as follows: (1) Eliminate the extra components thereby re-
ducing the additional NeRF training cost; (2) Reduce the
world size leading to augmented ray sampling density and

voxel density; (3) Pruning of rays unrelated to the object,
significantly conserving CUDA memory and enabling the
utilization of higher resolution images. In order to achieve
these advantages above, some methods will be introduced
during the NeRF training procedure.

According to the segmented sparse point cloud in Sub-
section 4.2, a bounding box B can be calculated from the
known 3D point coordinates, which provides the scale of
the world size in NeRF settings. With the much smaller
bounding box, the density of ray sampling and the voxel
grid increase accordingly (e.g. in the first column of Fig. 3,
the overall voxel grid size decreases to 1% of the original
one). Additionally, any rays which not intersect with the
bounding box, i.e. out of the box, will be pruned and not be
used to supervise the training. In this way, the number of
effective training rays is reduced by an order of magnitude,
which makes the utilization of higher resolution possible.
As shown in Fig. 7, with higher resolution input RGB im-
ages, the reconstruction performance increases accordingly.

5. Experiments
5.1. Implementation Details

Dataset. In order to verify the generality of our proposed
comprehensive pipeline, we evaluate the Obj-NeRF on var-
ious multi-view datasets, including face-forwarding LLFF
dataset [16], Mip NeRF 360 dataset [2], LERF dataset [11],
and large indoor datasets such as 3RScan [30], ScanNet [7],
and ScanNet++ [32]. Obj-NeRF will provide an indicated
object NeRF with only a single prompt input for any sce-
nario in these datasets. For large indoor datasets, the self-
prompting procedure mentioned in Subsection 4.3 can be
used. It will eventually provide a large multi-view object
dataset including thousands of objects.

Novel-view Synthesis. In our process of synthesizing
novel views, we utilize the framework of DVGO NeRF [27].
It is important to note that our method is not limited to
DVGO, other implementations of NeRF such as Instant
NGP [19] or NeRF Studio [28] can also be used. More-
over, we have improved the quality of reconstruction by
adopting the depth-supervision method from DS-NeRF [8].
To achieve object NeRF applications like object removal,
replacement, rotation, and color-changing, we have used
Blender to generate appropriate camera poses.

5.2. Results

Multi-view Segmentation Consistency. As Fig. 10 shown,
the proposed multi-view segmentation algorithm demon-
strates strong robustness in various datasets, including face-
forwarding, 360◦ panoramic, and large indoor scenes. Es-
pecially in the third row in Fig. 10, images in ScanNet
dataset [7] have relatively low resolution and sometimes
loss of focus, our proposed procedure also works.
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Figure 9. Comparison of novel view reconstruction performance with and without dense depth supervision.

Figure 10. Performance of the multi-view segmentation procedure; First row: LLFF dataset; Second row: Mip NeRF 360 dataset; Third
row: ScanNet dataset; Last row: LERF dataset.

Multi-view Object Dataset. We utilize our proposed
self-prompting method on some large indoor datasets in or-
der to construct a multi-view object dataset. As Fig. 11 has
shown, after indicating a textual input like ”chair” or ”ta-
ble”, it will automatically generate initial prompts for the
target object in each scene. After that, the multi-view seg-
mentation and NeRF training procedures are followed, con-
structing an object NeRF for each object.

Novel-view Synthesis. We construct the object NeRF
under the supervision of the multi-view segmentation im-
ages mentioned above. With the methods introduced in
Section 4, our novel view synthesis procedure overcomes
the obstruction effect, enables multi-object reconstruction,
and utilizes techniques that improve the reconstruction per-
formance. As shown in Fig. 8, we compare our proposed

method to SA3D [5] segmenting foreground NeRF from an
pre-trained full-scene NeRF, which suffers from low resolu-
tion and floaters. Our proposed method achieves relatively
high reconstruction quality across various scenarios, espe-
cially for large indoor datasets like the last row of Fig. 8,
where the full-scene NeRF required for SA3D is impracti-
cal and low-quality.

5.3. Applications

In order to verify the effectiveness of the object NeRF
dataset, we utilize the extracted object NeRF in various ap-
plications as shown in Fig. 12, including object removal,
replacement, rotation, and color changing.

Add-on. We can integrate the segmented object NeRF
into any existing NeRF to realize the add-on task. Dur-



“chair”

“table”

Figure 11. Construction of the multi-view objects dataset; With a textual input like ”chair” or ”table”, the initial prompts are generated
automatically for each scene.

Original image Object NeRF Duplicate an object

Remove an object

Move and rotate

Add an object

Recolor objects

Move and add

Figure 12. Applications of Obj-NeRF: editing NeRFs with object removal, add-on, movement, rotation, and color changing.

ing this process, we can also apply the rotation, resize, and
other transformations to the object NeRF. Nerfstudio and
blender [28] provides a user-friendly way to construct the
required camera poses during the editing procedure.

Removal. After obtaining the multi-view segmentation
for each image, we can add a reverse alpha channel to the
original image, representing the background environment
without the foreground object. During the NeRF training
procedure, the obstructed areas by the foreground object in
one view can be inferred by other views. In this way, the
object removal NeRF can be realized.

6. Conclusions

In this paper, we propose a comprehensive pipeline for con-
structing segmented object NeRFs, combining the 2D seg-
mentation proficiency of SAM and the 3D reconstruction
ability of NeRF. Without dependence on full-scene NeRF,
our proposed Obj-NeRF is widely applicable to various sce-
narios. Compared to existing works, our method outper-
forms on reconstruction quality and the extensiveness of
application environments. Additionally, we provide a feasi-
ble way to construct a large object NeRF dataset, which is
verified in some applications like NeRF editing tasks. For
future works, the constructed object NeRF dataset can be
extended to 3D generation tasks.
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